Hair removal options in darker skin types through laser innovation and energy-based modalities
DOI:
https://doi.org/10.18203/issn.2455-4529.IntJResDermatol20253403Keywords:
Darker skin types, Depilatory agents, Eflornithine, Fitzpatrick skin types IV-VI, Laser hair removal, Radiofrequency microneedlingAbstract
The rapid growth of aesthetic dermatology has amplified demand for hair removal among individuals with Fitzpatrick skin types IV-VI. However, traditional laser technologies, developed with lighter phototypes in mind, pose heightened risks of post inflammatory hyperpigmentation, scarring, and paradoxical hair growth in melanin-rich skin. This comprehensive review reconceptualizes the hair removal paradigm in skin of color (SOC) by integrating recent clinical data, histologic insights, and safety profiles across diverse technologies. Using dermal penetration models and comparative energy delivery diagrams, we demonstrate how long-pulsed Nd:YAG (1064 nm) lasers offer deeper follicular targeting with minimal epidermal melanin interaction, establishing them as the preferred modality in darker skin tones. We explore the emergence of melanin-independent radiofrequency (RF) and RF microneedling (RFM) systems, which generate controlled dermal heating without chromophore reliance, expanding their use in pseudofolliculitis barbae and scarring conditions. Topical alternatives like thioglycolates and eflornithine are re-evaluated for their synergistic potential in combination therapies, emphasizing safe regimens supported by evidence-based pre/post-treatment protocols. Importantly, this review addresses the critical gaps in dermatologic curricula, clinical trials, and device safety testing for SOC populations. Through an intersectional lens, we call for the development of Fitzpatrick-stratified laser protocols, standardization of treatment parameters, and inclusion of curl pattern morphology in care planning. By visualizing risk stratification trends, procedural pathways, and Melan in-histology interactions, this review offers a blueprint for delivering inclusive, precision-based cosmetic dermatology to historically underserved communities.
Metrics
References
Battle EF Jr, Hobbs LM. Laser-assisted hair removal for darker skin types. Dermatol Ther. 2004;17(2):177-83. DOI: https://doi.org/10.1111/j.1396-0296.2004.04018.x
Lanigan SW. Incidence of side effects after laser hair removal. J Am Acad Dermatol. 2003;49(5):882-6. DOI: https://doi.org/10.1016/S0190-9622(03)02106-6
Ismail SA. Long-pulsed Nd:YAG laser vs. intense pulsed light for hair removal in dark skin: a randomized controlled trial. Br J Dermatol. 2012;166(2):317-21. DOI: https://doi.org/10.1111/j.1365-2133.2011.10695.x
Van Buren N, Alster TS. Laser treatment of dark skin: a review and update. J Drugs Dermatol. 2009;8(9):821-7.
Rao K, Sankar TK. Long-pulsed Nd:YAG laser-assisted hair removal in Fitzpatrick skin types IV-VI. Lasers Med Sci. 2011;26(5):623-6.
Jacobs J, Lebhar J, Diamond C, Rundle C, Stamey C. Skin of Color Representation in Clinical Trials: An Analysis of Clinicaltrials.gov From 2008-2022. J Drugs Dermatol. 2023;22(3):310-1. DOI: https://doi.org/10.36849/JDD.7087
Hereford B, Kim Y, Zaenglein AL, Hollins LC. Photographic representation of skin tones in three dermatology journals. Pediatr Dermatol. 2021;00:1-3. DOI: https://doi.org/10.1111/pde.14766
Gupta R, Ibraheim MK, Dao H, Patel AB, Koshelev M. Assessing dermatology resident confidence in caring for patients with skin of color. Clin Dermatol. 2021;39(5):873-8. DOI: https://doi.org/10.1016/j.clindermatol.2021.08.019
Hurbain I, Romao M, Sextius P, Emilie B, Céline M, Françoise B, et al. Melanosome distribution in keratinocytes in different skin types: melanosome clusters are not degradative organelles. J Invest Dermatol. 2018;138(3):647-56. DOI: https://doi.org/10.1016/j.jid.2017.09.039
Zamudio Díaz DF, Busch L, Kröger M, Anna LK, Silke BL, Karsten RM, et al. Significance of melanin distribution in the epidermis for the protective effect against UV light. Sci Rep. 2024;14(1):3488. DOI: https://doi.org/10.1038/s41598-024-53941-0
Soares I, Amaral IP, Correia MP, Travassos R, Filipe P. Complications of dermatologic lasers in high Fitzpatrick phototypes and management: an updated narrative review. Lasers Med Sci. 2024;39(1):149. DOI: https://doi.org/10.1007/s10103-024-04100-4
Shah S, Alster TS. Laser Treatment of Dark Skin. Am J Clin Dermatol. 2010;11:389-97. DOI: https://doi.org/10.2165/11538940-000000000-00000
Shi X, Xia X, Xiao Y, Ying Z, Yiyi G, Yahui C, et al. Increased melanin induces aberrant keratinocyte-melanocyte-basal-fibroblast cell communication and fibrogenesis by inducing iron overload and ferroptosis resistance in keloids. Cell Commun Signal. 2025;23(1):141. DOI: https://doi.org/10.1186/s12964-025-02116-z
Shen Z, Shao J, Sun J, Xu J. Exosomes released by melanocytes modulate fibroblasts to promote keloid formation: a pilot study. J Zhejiang Univ Sci B. 2022;23(8):699-704. DOI: https://doi.org/10.1631/jzus.B2200036
Krueger L, Aguh C, Peterson E, Jamael T, JaBreia J, Kristen LS, et al. Curl pattern classification: a potential tool for communication and risk stratification [published correction appears in Int J Womens Dermatol. Int J Womens Dermatol. 2022;8(2):e015. DOI: https://doi.org/10.1097/JW9.0000000000000015
Moody SN, van Dammen L, Wang W, Kimberly AG, Jenae MN, Patience AA, et al. Impact of hair type, hair sample weight, external hair exposures, and race on cumulative hair cortisol. Psychoneuroendocrinology. 2022;142:105805. DOI: https://doi.org/10.1016/j.psyneuen.2022.105805
Gaines MK, Page IY, Miller NA, Benjamin RG, Joshua JM, Duncan JI, et al. Reimagining hair science: a new approach to classify curly hair phenotypes via new quantitative geometric and structural mechanical parameters. Acc Chem Res. 2023;56(11):1330-9. DOI: https://doi.org/10.1021/acs.accounts.2c00740
Mayo TT, Callender VD. The art of prevention: It's too tight-loosen up and let your hair down. Int J Womens Dermatol. 2021;7(2):174-9. DOI: https://doi.org/10.1016/j.ijwd.2021.01.019
Ogunbiyi A. Pseudofolliculitis barbae; current treatment options. Clin Cosmet Investig Dermatol. 2019;12:241-7. DOI: https://doi.org/10.2147/CCID.S149250
Perry PK, Cook-Bolden FE, Rahman Z, Jones E, Taylor SC. Defining pseudofolliculitis barbae in 2001: a review of the literature and current trends. J Am Acad Dermatol. 2002;46(2):S113-9. DOI: https://doi.org/10.1067/mjd.2002.120789
Vaidya T, Hohman MH, Kumar DD. Laser hair removal. In StatPearls. StatPearls Publishing. 2023.
Güdük Ş. Efficacy and safety of long-pulsed alexandrite laser for the treatment of solar lentigines. Turkderm- Turk Arch Dermatol Venereol. 2023;57:108-12. DOI: https://doi.org/10.4274/turkderm.galenos.2023.21855
Garcia C, Alamoudi H, Nakib M, Zimmo S. Alexandrite Laser Hair Removal is Safe for Fitzpatrick Skin Types IV-VI. Dermatologic Surg. 2000;26(2):130-4. DOI: https://doi.org/10.1046/j.1524-4725.2000.99185.x
Atta-Motte M, Załęska I. Diode laser 805 hair removal side effects in groups of various ethnicities: Cohort study results. J Lasers Med Sci. 2020;11(2):132-7. DOI: https://doi.org/10.34172/jlms.2020.23
Tremaine AM, Avram MM. FDA MAUDE data on complications with lasers, light sources, and energy-based devices. Lasers Surg Med. 2015;47(2):133-40. DOI: https://doi.org/10.1002/lsm.22328
Greppi I. Diode laser hair removal of the Black patient. Lasers Surg Med. 2001;28(2):150-5. DOI: https://doi.org/10.1002/lsm.1031
Alster TS, Bryan H, Williams CM. Long-pulsed Nd:YAG laser-assisted hair removal in pigmented skin: A clinical and histological evaluation. Arch Dermatol. 2001;137(7):885-9.
Vachiramon V, Brown T, McMichael AJ. Patient satisfaction and complications following laser hair removal in ethnic skin. J Drugs Dermatol. 2012;11(2):191-5.
Rao K, Sankar TK. Long-pulsed Nd:YAG laser-assisted hair removal in Fitzpatrick skin types IV-VI. Lasers in Med Sci. 2011;26(5):623-6. DOI: https://doi.org/10.1007/s10103-011-0922-1
Shin JM, Kim JE. Radiofrequency in clinical dermatology. Med Lasers. 2013;2(2):49-57. DOI: https://doi.org/10.25289/ML.2013.2.2.49
Alexiades M. Radiofrequency microneedling. Facial Plastic Surg Clin N Am. 2023;31(4):495-502. DOI: https://doi.org/10.1016/j.fsc.2023.06.010
Dayan E, Chia C, Burns AJ, Theodorou S. Adjustable depth fractional radiofrequency combined with bipolar radiofrequency: A minimally invasive combination treatment for skin laxity. Aesthetic Surg J. 2019;39(3):S112-9. DOI: https://doi.org/10.1093/asj/sjz055
Shauly O, Marxen T, Menon A, Gould DJ, Miller LB, Losken A. Radiofrequency microneedling: Technology, devices, and indications in the modern plastic surgery practice. Aesthetic Surg J. 2023;5:ojad100. DOI: https://doi.org/10.1093/asjof/ojad100
Garden JM, Zelickson B, Gold MH, Friedman D, Kutscher TD, Afsahi V. Home hair removal in all skin types with a combined radiofrequency and optical energy source device. Dermatologic Surg. 2014;40(2):142-51. DOI: https://doi.org/10.1111/dsu.12407
Al-Dhalimi MA, Kadhum MJ. A split-face comparison of facial hair removal with the long-pulsed alexandrite laser and intense pulsed light system. J Cosmetic Laser Therapy. 2015;17(5):267-72. DOI: https://doi.org/10.3109/14764172.2015.1027223
Shokeir H, Samy N, Taymour M. Pseudofolliculitis barbae treatment: efficacy of topical eflornithine, long‐pulsed Nd‐YAG laser versus their combination. J Cosmetic Dermatol. 2021;20(11):3517-25. DOI: https://doi.org/10.1111/jocd.14027
Xia Y, Cho S, Howard RS, Maggio KL. Topical eflornithine hydrochloride improves the effectiveness of standard laser hair removal for treating pseudofolliculitis barbae: A randomized, double-blinded, placebo-controlled trial. J Am Academy Dermatol. 2012;67(4):694-9. DOI: https://doi.org/10.1016/j.jaad.2011.10.029
Yin D, Hao J, Jin R, Yanmei Y, Sobha RB, Yuan H, et al. Epidermal Fatty Acid-Binding Protein Mediates Depilatory-Induced Acute Skin Inflammation. J Invest Dermatol. 2022;142(7):1824-34. DOI: https://doi.org/10.1016/j.jid.2021.11.040
Kindred C, Oresajo CO, Yatskayer M, Halder RM. Comparative evaluation of men's depilatory composition versus razor in black men. Cutis. 2011;88(2):98-103.
Bachmann AS, Geerts D. Polyamine synthesis as a target of MYC oncogenes. J Biol Chem. 2018;293(48):18757-69. DOI: https://doi.org/10.1074/jbc.TM118.003336
Zahoor H, Noor SM, Paracha MM. Combination of intense pulse light and topical eflornithine therapy versus intense pulse light therapy alone in the treatment of idiopathic facial hirsutism: a randomized controlled trial. J Pak Med Assoc. 2019;69(7):930-3.
Dorgham NA, Dorgham DA. Lasers for reduction of unwanted hair in skin of colour: a systematic review and meta-analysis. J Eur Acad Dermatol Venereol. 2020;34(5):948-55. DOI: https://doi.org/10.1111/jdv.15995
Semchyshyn N, Prodanovic E, Varade R. Treating acne scars in patients with Fitzpatrick skin types IV to VI using the 1450-nm diode laser. Cutis. 2013;92(1):49-53.
Tanzi EL, Alster TS. Comparison of a 1450-nm diode laser and a 1320-nm Nd:YAG laser in the treatment of atrophic facial scars: a prospective clinical and histologic study. Dermatol Surg. 2004;30(2 Pt 1):152-7. DOI: https://doi.org/10.1111/j.1524-4725.2004.30078.x
Konishi N, Endo H, Oiso N, Kawara S, Kawada A. Acne phototherapy with a 1450-nm diode laser: an open study. Ther Clin Risk Manag. 2007;3(1):205-9. DOI: https://doi.org/10.2147/tcrm.2007.3.1.205
Gan SD, Graber EM. Laser hair removal: a review. Dermatol Surg. 2013;39(6):823-38. DOI: https://doi.org/10.1111/dsu.12116
El-Domyati M, El-Ammawi TS, Medhat W, Moawad O, Mahoney MG, Uitto J. Effects of the Nd:YAG 1320-nm laser on skin rejuvenation: clinical and histological correlations. J Cosmet Laser Ther. 2011;13(3):98-106. DOI: https://doi.org/10.3109/14764172.2011.586423
Hu S, Atmakuri M, Rosenberg J. Adverse Events of Nonablative Lasers and Energy-Based Therapies in Subjects with Fitzpatrick Skin Phototypes IV to VI: A Systematic Review and Meta-Analysis. Aesthet Surg J. 2022;42(5):537-47. DOI: https://doi.org/10.1093/asj/sjab398
Mathew ML, Karthik R, Mallikarjun M, Bhute S, Varghese A. Intense Pulsed Light Therapy for Acne-induced Post-inflammatory Erythema. Indian Dermatol Online J. 2018;9(3):159-64. DOI: https://doi.org/10.4103/idoj.IDOJ_306_17
Vemula S, Maymone MBC, Secemsky EA, Raphael W, Nicole MP, Dana S, et al. Assessing the safety of superficial chemical peels in darker skin: A retrospective study. J Am Acad Dermatol. 2018;79(3):508-13. DOI: https://doi.org/10.1016/j.jaad.2018.02.064
Chinese Society of Dermatology, China Dermatologist Association, Chinese Association of Integrative Medicine Board of Dermatovenereology. Expert consensus on the clinical application of chemical peeling in China. Chin J Dermatol. 2022;55(11):949-55.
Sarkar R, Bansal S, Garg VK. Chemical peels for melasma in dark-skinned patients. J Cutan Aesthet Surg. 2012;5(4):247-53. DOI: https://doi.org/10.4103/0974-2077.104912
Khunger N, IADVL Task Force. Standard guidelines of care for chemical peels. Indian J Dermatol Venereol Leprol. 2008;74:S5-12.
Lee KC, Wambier CG, Soon SL, Barton SJ, Marina L, Peter R, et al. Basic chemical peeling: Superficial and medium-depth peels. J Am Acad Dermatol. 2019;81(2):313-24. DOI: https://doi.org/10.1016/j.jaad.2018.10.079