The future of dermatology: integrating artificial intelligence into clinical practice
DOI:
https://doi.org/10.18203/issn.2455-4529.IntJResDermatol20250444Keywords:
AI, Learning, Diagnosis, Dermatopathology, BeautyAbstract
Dermatology has benefited considerably from the use of artificial intelligence (AI), which has emerged as a crucial tool in healthcare. Algorithms for machine learning (ML) and deep learning (DL), in particular convolutional neural networks (CNNs), have demonstrated significant promise in the diagnosis of skin disorders, classification of lesions, and telemedicine support. The use of AI in dermatology is examined in this paper, with particular attention paid to how it might improve patient care, increase access to dermatological treatments, and improve diagnostic accuracy. It also discusses the difficulties, moral dilemmas, and potential applications of AI in dermatology. It highlights the necessity of cooperation between researchers, practitioners, and regulatory agencies to guarantee a secure and efficient transition into clinical practice.
Metrics
References
Adamu S, Alhussian H, Aziz N, Abdulkadir SJ, Alwadin A, Abubakar Imam A, et al. The future of skin cancer diagnosis: a comprehensive systematic literature review of machine learning and deep learning models. Cogent Engineering. 2024;11(1):2395425. DOI: https://doi.org/10.1080/23311916.2024.2395425
Maron RC, Weichenthal M, Utikal JS, Hekler A, Berking C, Hauschild A, et al. Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks. Euro J Cancer. 2019;119:57-65. DOI: https://doi.org/10.1016/j.ejca.2019.06.013
Rinner C, Apalla Z, Tschandl P. Working together, humans and computers can detect skin cancer. in Nature Med. 2020;26(8):1221-8.
Kohane IS. Injecting artificial intelligence into medicine. Nejm Ai. 2024;1(1):2300197. DOI: https://doi.org/10.1056/AIe2300197
Guzman AK, Schmults CD, Ruiz ES. Squamous cell carcinoma: an update in staging, management, and postoperative surveillance strategies. Dermatologic Clinics. 2023;41(1):1-18. DOI: https://doi.org/10.1016/j.det.2022.07.004
Jarada TN, Rokne JG, Alhajj R. SNF–CVAE: computational method to predict drug–disease interactions using similarity network fusion and collective variational autoencoder. Knowledge-Based Systems. 2021;212:106585. DOI: https://doi.org/10.1016/j.knosys.2020.106585
Sowa-Kucma M, Bertollo A, Estrada-Camarena E, Zhang R, Lihong Ye, Jiayi Wu, et al. The pharmacotherapy of depression-searching for new mechanisms and drug interactions. Bas and Clin Res.. 2024;2:46.
Coustasse A, Sarkar R, Abodunde B, Metzger BJ, Slater CM. Use of teledermatology to improve dermatological access in rural areas. Telemedicine and e-Health. 2019;25(11):1022-32. DOI: https://doi.org/10.1089/tmj.2018.0130
Zhang X, Gong J. Dermatopathology and AI. Am Acad Dermatol J. 2020;83(2):305-14.
Kar A. AI in dermatology for aesthetics. Cosmetic Dermatology J. 2020;19(5):1159–64.
Goyal C. Dermatology and artificial intelligence. J European Acad Dermatol Venereol. 2021;35(2):317026.
Argenziano G. Skin cancer diagnosis with AI enhancement. Clin Dermatol. 2020;38(4):391-400.
Lipczynska A. Artificial Intelligence in Teledermatology. J Telemed Telecare. 2020;26(3):130-47.
Lee H. Dermatology's AI difficulties. Investig Dermatol J. 2019;139(5):930-7.
Roy R. Ethics in the application of AI in dermatology. Dermatol and Ther. 2019;9(3):323-32.
Sarker R. AI tool regulation in dermatology. Dermatolog Sci J. 2020;97(1):3–9.
Mirza FN, Haq Z, Abdi P, Diaz MJ, Libby TJ. Artificial intelligence for Mohs and dermatologic surgery: a systematic review and meta-analysis. Dermatol Surg. 2022;2:10-97.
Goehl H. Combining several data sources in dermatology. J Artif Int Med. 2020;28(6):515-23.
Lee A. AI in dermatology through ongoing learning. IEEE Biomed Eng Transac. 2020;67(6):1647-55.
Shen Y, Yu J, Zhou J, Hu G. Twenty-five years of evolution and hurdles in electronic health records and interoperability in medical research: comprehensive review. J Med Int Res. 2025;27:59024. DOI: https://doi.org/10.2196/59024
Johnson C. Integration of multimodal data in dermatology. Clin Med J. 2021;10(3):715–26.
Ye Z, Zhang D, Zhao Y, Chen M, Wang H, Seery S, et al. Deep learning algorithms for melanoma detection using dermoscopic imaging: A systematic review and meta-analysis. Art Intellig Med. 2024;3:102934. DOI: https://doi.org/10.1016/j.artmed.2024.102934
Liu L, Zhao W, Ma Q, Gao Y, Wang W, Zhang X, et al. Functional nano-systems for transdermal drug delivery and skin therapy. Nanoscale Advances. 2023;5(6):1527-58. DOI: https://doi.org/10.1039/D2NA00530A
Dou B, Zhu Z, Merkurjev E, Ke L, Chen L, Jiang J, et al. Machine learning methods for small data challenges in molecular science. Chem Rev. 2023;123(13):8736-80. DOI: https://doi.org/10.1021/acs.chemrev.3c00189
Yang X. AI-based melanoma risk prediction., Br J Dermatol. 2020;182(4):1029–37.
Lee Y. An overview of existing procedures and potential future paths in deep learning for dermatology. J Dermatol Int. 2020;60(2):233–44. DOI: https://doi.org/10.1111/j.1365-4632.2010.04306.x
Qiu H. AI-based dermatology decision support systems. Clin Dermatol J. 2020;28(4):487–95.
Sun Y. AI models in dermatological telemedicine. Dermatologic Clin. 2020;38(3):231–9.
Tanwar S, Kumari A, Vekaria D, Kumar N, Sharma R. An AI-based disease detection and prevention scheme for COVID-19. Comp Elec Eng. 2022;103:108352. DOI: https://doi.org/10.1016/j.compeleceng.2022.108352
Kumar Y, Koul A, Singla R, Ijaz MF. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. J Amb Intellig Human Comp. 2023;14(7):8459-86. DOI: https://doi.org/10.1007/s12652-021-03612-z