Unravelling the role of the skin microbiome in immunodermatological diseases: implications for therapeutic interventions
DOI:
https://doi.org/10.18203/issn.2455-4529.IntJResDermatol20250442Keywords:
Skin microbiome, Cutaneous homeostasis, Immune responses, Immunodermatological diseases, Psoriasis, Eczema, Acne vulgaris, DysbiosisAbstract
The skin microbiome, comprising diverse microbial communities, is pivotal in maintaining cutaneous homeostasis and modulating immune responses in immunodermatological diseases. This review provides an overview of recent research investigating the interplay between the skin microbiome and autoimmune, allergic, and inflammatory skin conditions, such as psoriasis, eczema, and acne vulgaris. Current evidence suggests that alterations in the skin microbiome composition, termed dysbiosis, may contribute to disease pathogenesis and exacerbate inflammation in immunodermatological disorders. Furthermore, microbial-derived metabolites and immune-modulating factors produced by commensal bacteria can influence local immune responses and skin barrier function. Future research directions include evaluating how the skin microbiome interacts with the host immune system, identifying microbial biomarkers for disease diagnosis and prognosis, and exploring microbiome-targeted therapeutic interventions, such as probiotics, microbial transplantation, and microbial metabolite supplementation. By leveraging insights from microbiome research, personalized approaches to managing immunodermatological diseases may offer novel therapeutic avenues for restoring skin immune homeostasis and improving patient outcomes.
Metrics
References
Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326(5960):1694-7. DOI: https://doi.org/10.1126/science.1177486
Brandwein M, Bentwich Z, Steinberg D. Endogenous antimicrobial peptide expression in response to bacterial epidermal colonization. Front Immunol. 2017;8:1637. DOI: https://doi.org/10.3389/fimmu.2017.01637
Pistone D, Meroni G, Panelli S, D’Auria E, Acunzo M, Pasala AR, et al. A journey on the skin microbiome: pitfalls and opportunities. Int J Mol Sci. 2021;22(18):9846. DOI: https://doi.org/10.3390/ijms22189846
Teplyuk NP, Kolesova YV, Vartanova NO, Leonova AY. Comparison of skin microbiome components analyzed by culture method in patients with autoimmune pemphigus. Russian J Skin Ven Dis. 2023;26(1):51-61. DOI: https://doi.org/10.17816/dv119963
Uddin N, Ostano P, Chiorino G, di Domizio J, Gilliet M, Philpott M. Exploring host–microbiome–immune interactions using singular and multispecies inoculations in optimized 3D skin models. British J Dermatol. 2023;189(1):174. DOI: https://doi.org/10.1093/bjd/ljad174.006
Patra V, Gallais Sérézal I, Wolf P. Potential of skin microbiome, pro-and/or pre-biotics to affect local cutaneous responses to UV exposure. Nutrients. 2020;12(6):1795. DOI: https://doi.org/10.3390/nu12061795
Naik B, Sasikumar J, Das SP. Fungal coexistence in the skin mycobiome: a study involving Malassezia, Candida, and Rhodotorula. AMB Express. 2024;14(1):26. DOI: https://doi.org/10.1186/s13568-024-01674-8
Dulai AS, Min M, Sivamani RK. The Role of the Skin Mycobiome in Atopic Dermatitis: Implication of Yeast and Fungus Overgrowth in Disease Exacerbation. Dermatitis®. 2024;35(1):111-2. DOI: https://doi.org/10.1089/derm.2023.0248
Harris-Tryon TA, Grice EA. Microbiota and maintenance of skin barrier function. Sci. 2022;376(6596):940-5. DOI: https://doi.org/10.1126/science.abo0693
Canchy L, Kerob D, Demessant AL, Amici JM. Wound healing and microbiome, an unexpected relationship. Journal of the European Academy of Dermatology and Venereology. 2023;37:7-15. DOI: https://doi.org/10.1111/jdv.18854
Olejniczak-Staruch I, Ciążyńska M, Sobolewska-Sztychny D, Narbutt J, Skibińska M, Lesiak A. Alterations of the skin and gut microbiome in psoriasis and psoriatic arthritis. International journal of molecular sciences. 2021;22(8):3998. DOI: https://doi.org/10.3390/ijms22083998
Langan EA, Künstner A, Miodovnik M, Zillikens D, Thaçi D, Baines JF, et al. Combined culture and metagenomic analyses reveal significant shifts in the composition of the cutaneous microbiome in psoriasis. British J Dermatol. 2019;181(6):1254-64. DOI: https://doi.org/10.1111/bjd.17989
Braun C, Patra V, Lina G, Nicolas JF, Vocanson M, Nosbaum A. The role of skin dysbiosis in atopic dermatitis. European J Dermatol. 2022;32(4):439-44. DOI: https://doi.org/10.1684/ejd.2022.4289
Demessant‐Flavigny AL, Connétable S, Kerob D, Moreau M, Aguilar L, Wollenberg A. Skin microbiome dysbiosis and the role of Staphylococcus aureus in atopic dermatitis in adults and children: A narrative review. J European Acad Dermatol Venereol. 2023;37:3-17. DOI: https://doi.org/10.1111/jdv.19125
Huang C, Zhuo F, Han B, Li W, Jiang B, Zhang K, et al. The updates and implications of cutaneous microbiota in acne. Cell & Bioscience. 2023;13(1):113. DOI: https://doi.org/10.1186/s13578-023-01072-w
Bernales Salinas A. Acne vulgaris: role of the immune system. International Journal of Dermatology. 2021;60(9):1076-81. DOI: https://doi.org/10.1111/ijd.15415
Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell research. 2020;30(6):492-506. DOI: https://doi.org/10.1038/s41422-020-0332-7
Zhao H, Shang L, Zhang Y, Liang Z, Wang N, Zhang Q, et al. J. IL-17A inhibitors alleviate Psoriasis with concomitant restoration of intestinal/skin microbiota homeostasis and altered microbiota function. Front in Immunol. 2024;15:1344963. DOI: https://doi.org/10.3389/fimmu.2024.1344963
Borgia F, Custurone P, Peterle L, Pioggia G, Gangemi S. Role of epithelium-derived cytokines in atopic dermatitis and psoriasis: Evidence and therapeutic perspectives. Biomolecules. 2021;11(12):1843. DOI: https://doi.org/10.3390/biom11121843
Flowers L, Grice EA. The skin microbiota: balancing risk and reward. Cell host & microbe. 2020;28(2):190-200. DOI: https://doi.org/10.1016/j.chom.2020.06.017
Rai S, Rai G, Kumar A. Eco-evolutionary impact of ultraviolet radiation (UVR) exposure on microorganisms, with a special focus on our skin microbiome. Microbiological Research. 2022;260:127044. DOI: https://doi.org/10.1016/j.micres.2022.127044
Isler MF, Coates SJ, Boos MD. Climate change, the cutaneous microbiome and skin disease: implications for a warming world. International J Dermatol. 2023;62(3):337-45. DOI: https://doi.org/10.1111/ijd.16297
SanMiguel AJ, Meisel JS, Horwinski J, Zheng Q, Grice EA. Topical antimicrobial treatments can elicit shifts to resident skin bacterial communities and reduce colonization by Staphylococcus aureus competitors. Antimicrobial agents and chemotherapy. 2017;61(9):10-128. DOI: https://doi.org/10.1128/AAC.00774-17
Cogen AL, Yamasaki K, Sanchez KM, Dorschner RA, Lai Y, MacLeod DT, et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J Inves Dermatol. 2010;130(1):192-200. DOI: https://doi.org/10.1038/jid.2009.243
Severn MM, Horswill AR. Staphylococcus epidermidis and its dual lifestyle in skin health and infection. Nature Reviews Microbiology. 2023;21(2):97-111 DOI: https://doi.org/10.1038/s41579-022-00780-3
Merana GR, Dwyer LR, Dhariwala MO, Weckel A, Gonzalez JR, Okoro JN, et al. Intestinal inflammation alters the antigen-specific immune response to a skin commensal. Cell reports. 2022;39(9):45-8. DOI: https://doi.org/10.1016/j.celrep.2022.110891
Bäsler K, Brandner JM. Tight junctions in skin inflammation. Pflügers Archiv-European J of Physiol. 2017;469(1):3-14. DOI: https://doi.org/10.1007/s00424-016-1903-9
Keshari S, Balasubramaniam A, Myagmardoloonjin B, Herr DR, Negari IP, Huang CM. Butyric acid from probiotic staphylococcus epidermidis in the skin microbiome down-regulates the ultraviolet-induced pro-inflammatory IL-6 cytokine via short-chain fatty acid receptor. Int J Molec Sci. 2019;20(18):4477. DOI: https://doi.org/10.3390/ijms20184477
Trompette A, Pernot J, Perdijk O, Alqahtani RA, Santo Domingo J, Camacho-Muñoz D, et al. Gut-derived short-chain fatty acids modulate skin barrier integrity by promoting keratinocyte metabolism and differentiation. Mucosal Immunol. 2022;15(5):908-26. DOI: https://doi.org/10.1038/s41385-022-00524-9
Fisher CR, Masters TL, Johnson S, Greenwood-Quaintance KE, Chia N, Abdel MP, et al. Comparative transcriptomic analysis of Staphylococcus epidermidis associated with periprosthetic joint infection under in vivo and in vitro conditions. Int J Med Microbiol. 2024;315:151620. DOI: https://doi.org/10.1016/j.ijmm.2024.151620
Williams MR, Bagood MD, Enroth TJ, Bunch ZL, Jiang N, Liu E, et al. Staphylococcus epidermidis activates keratinocyte cytokine expression and promotes skin inflammation through the production of phenol-soluble modulins. Cell reports. 2023;42(9):1134. DOI: https://doi.org/10.1016/j.celrep.2023.113024
Eluchans NS, Barberis C, Cittadini R, Villca AM, Veiga MF, Vilches V, Vay C, Almuzara M. Infecciones mamarias por Corynebacterium kroppenstedtii: comunicación de 4 casos. Revista Argentina de Microbiología. 2021;53(4):304-8. DOI: https://doi.org/10.1016/j.ram.2021.01.002
Johnstone KJ, Robson J, Cherian SG, Cheong JW, Kerr K, Bligh JF. Cystic neutrophilic granulomatous mastitis associated with Corynebacterium including Corynebacterium kroppenstedtii. Pathology. 2017;49(4):405-12. DOI: https://doi.org/10.1016/j.pathol.2017.01.006
Clanner‐Engelshofen BM, French LE, Reinholz M. Corynebacterium kroppenstedtii subsp. demodicis is the endobacterium of Demodex folliculorum. J European Acad Dermatol Venereol. 2020;34(5):1043-9. DOI: https://doi.org/10.1111/jdv.16069
Swaney MH, Sandstrom S, Kalan LR. Cobamide sharing drives skin microbiome dynamics. bioRxiv. 2020 :2020-12. DOI: https://doi.org/10.1101/2020.12.02.407395
Celis AM, Wösten HA, Triana S, Restrepo S, De Cock H. Malassezia spp. beyond the mycobiota. SM Dermatol. J. 2017;3:1-10. DOI: https://doi.org/10.36876/smdj.1019
Zhang XE, Zheng P, Ye SZ, Ma X, Liu E, Pang YB, et al. Microbiome: role in inflammatory skin diseases. J Inf Res. 2024;3:1057-82. DOI: https://doi.org/10.2147/JIR.S441100
Moreira RT, Lallo MA, Alvares-Saraiva AM, Hurtado EC, Konno FT, Spadacci-Morena D, et al. Dichotomous response of Malassezia-infected macrophages to Malassezia pachydermatis and Malassezia furfur. Medical Mycol. 2019;57(5):628-35. DOI: https://doi.org/10.1093/mmy/myy104
Sroczyńska M, Luchowska A, Żaczek A. Exploring the use of probiotics in dermatology–a literature review. J Edu, Health and Sport. 2023;13(3):11-7. DOI: https://doi.org/10.12775/JEHS.2023.13.03.001
Campaniello D, Bevilacqua A, Speranza B, Racioppo A, Sinigaglia M, Corbo MR. A narrative review on the use of probiotics in several diseases. Evidence and perspectives. Front Nutr. 2023;10:1209238. DOI: https://doi.org/10.3389/fnut.2023.1209238
Piewngam P, Khongthong S, Roekngam N, Theapparat Y, Sunpaweravong S, Faroongsarng D, et al. Probiotic for pathogen-specific Staphylococcus aureus decolonisation in Thailand: a phase 2, double-blind, randomised, placebo-controlled trial. The Lancet Microbe. 2023;4(2):75-83. DOI: https://doi.org/10.1016/S2666-5247(22)00322-6
Mays ZJ, Nair NU. A quantitative model for metabolic intervention using gut microbes. Biotechnol. 2021;37(5):3125. DOI: https://doi.org/10.1002/btpr.3125
Cohen PR, Kurzrock R. Dermatologic disease-directed targeted therapy (D3T2): the application of biomarker-based precision medicine for the personalized treatment of skin conditions—precision dermatology. Dermatol and Ther. 2022;12(10):2249-71. DOI: https://doi.org/10.1007/s13555-022-00801-2
Zakria D, Brownstone N, Armstrong AW, Boh EE, Koo JY, Merola JE, et al. Integrating Precision Medicine into Medical Dermatology Clinical Practice: An Expert Consensus Panel. J Drug Dermatol. 2023;22(6):588-93. DOI: https://doi.org/10.36849/JDD.7432
Dessì A, Pintus R, Fanos V, Bosco A. Integrative Multiomics Approach to Skin: The Sinergy between Individualised Medicine and Futuristic Precision Skin Care. Metabolites. 2024;14(3):157. DOI: https://doi.org/10.3390/metabo14030157
Rikken G, Meesters LD, Jansen PA, Rodijk-Olthuis D, van Vlijmen-Willems IM, Niehues H, et al. Advanced methodology for bacterial colonization of 3D organotypic epidermal models: a gateway to long-term host-microbe interaction and intervention studies. bioRxiv. 2023;2:23-6. DOI: https://doi.org/10.1101/2023.06.21.545853
Loomis KH, Wu SK, Ernlund A, Zudock K, Reno A, Blount K, Karig DK. A mixed community of skin microbiome representatives influences cutaneous processes more than individual members. Microbiome. 2021;9:1-7. DOI: https://doi.org/10.1186/s40168-020-00963-1
Moitinho-Silva L, Degenhardt F, Rodriguez E, Emmert H, Juzenas S, Möbus L, et al. Host genetic factors related to innate immunity, environmental sensing and cellular functions are associated with human skin microbiota. Nature communications. 2022;13(1):6204. DOI: https://doi.org/10.1038/s41467-022-33906-5
Houser AE, Kazmi A, Nair AK, Ji AL. The Use of Single-Cell RNA-Sequencing and Spatial Transcriptomics in Understanding the Pathogenesis and Treatment of Skin Diseases. JID Innovations. 2023;3(4):100198. DOI: https://doi.org/10.1016/j.xjidi.2023.100198
Ahn J, Li H. Microbial risk score for capturing microbial characteristics, integrating multi-omics data, and predicting disease risk. Microbiome. 2022;10(1):121. DOI: https://doi.org/10.1186/s40168-022-01310-2